Sains Malaysiana 53(1)(2024): 189-200

http://doi.org/10.17576/jsm-2024-5301-14

 

Kesan Transglutaminase kepada Ciri Fizikokimia dan Aktiviti Biologi Hidrolisat Sarang Burung Walit

(Effect of Transglutaminase towards Physicochemical Properties and Biological Activities of Edible Bird’s Nest Hydrolysates)

 

KOH YUN SHI1, TER ZHI YIN1, RAFIDAH MOHD ARIFF1,4, NUR FARHANA ABD RAHMAN1,5, CHANG LEE SIN2,3, ABDUL SALAM BABJI1,2 & LIM SENG JOE1,2,*

 

1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Pusat Inovasi Teknologi Manisan (MANIS), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Jabatan Sains Makanan dan Nutrisi, Fakulti Sains Gunaan, Universiti UCSI, No.1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia

 4International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100 Jalan Gombak, Kuala Lumpur, Malaysia

5 School of Industrial Technology, Faculty of Applied Sciences, UiTM Shah Alam, Shah Alam 40450, Malaysia

 

Diserahkan: 9 Mac 2023/Diterima: 8 Disember 2023

 

Abstrak

Kajian terdahulu menunjukkan bahawa glikoprotein sarang burung walit boleh dihidrolisis dan dipulihkan sebagai hidrolisat sarang burung walit (SBWh) yang boleh dimakan dalam bentuk serbuk. Kajian ini adalah kerja sambungan daripada kajian terdahulu, yang mana pelbagai kepekatan enzim transglutaminase (TG) telah digunakan dalam pembentukan semula bentuk serbuk SBWh menggunakan acuan dan kesannya terhadap sifat fizikokimia dan bioaktiviti SBWh. Proses hidrolisis enzim menunjukkan bahawa sampel SBWh mempunyai hasil pulih lebih daripada 60% dan menunjukkan warna yang lebih terang daripada SBW mentah. Kelarutan SBWh dengan TG lebih rendah tetapi ia boleh dibentuk semula ke bentuk yang diingini. Corak spektrum FTIR untuk sampel SBWh juga menunjukkan bahawa ketulenan glikopeptida SBW yang tinggi telah diperoleh. Untuk aktiviti antioksidan, produk sampingan SBWh (SBWhcp) menunjukkan aktiviti penyingkiran radikal bebas DPPH yang lebih tinggi. Secara ringkasnya, penambahan TG kepada SBWh telah meningkatkan sifat fizikokimia dan bioaktiviti. Penemuan ini menghasilkan wawasan tentang aplikasi dan pembangunan produk EBN menggunakan EBNh dengan TG yang mempunyai bioaktiviti yang tinggi.

 

Kata kunci: DPPH; gam daging; hidrolisat; sarang burung walit

 

Abstract

Previous study has shown that edible bird’s nest (EBN) glycoprotein can be hydrolysed and recovered as edible bird’s nest hydrolysate (EBNh) in the form of powder. This research is a continuous work from previous study, in which different concentrations of transglutaminase enzyme (TG) was applied in reconstituting the shape of EBNh powder using mould, and its effect on the physicochemical properties and bioactivities of EBNh. Enzymatic hydrolysis process showed that EBNh samples had recovery yield exceeding 60% and demonstrated brighter colour than raw EBN. Solubility of EBNh with TG was lower but it can be reconstituted into desirable shape. Spectrum pattern of FTIR for EBNh sample also showed that high authenticity of EBN glycopeptide was obtained. For antioxidant activities, EBNh co-product (EBNhcp) exhibited higher DPPH free radical scavenging activity. In short, addition of TG to EBNh has enhanced the physicochemical properties and bioactivities. The finding generates insight on the application and development of EBN products using EBNh with TG with high bioactivities.

 

Keywords: DPPH; edible bird’s nest; hydrolysate; meat glue

 

RUJUKAN

Ajayi, O., Okedina, T., Samuel, A., Asieba, G., Jegede, A., Onyemali, C., Ehiwuogu-Onyibe, J., Lawal, A. & Elemo, G. 2019. Evaluation of starter culture fermented sweet potato flour using FTIR spectra and GCMS chromatogram. African Journal of Microbiology Research 13(1): 1-13.

Ali, A.A.M., Noor, H.S.M., Chong, P.K., Babji, A.S. & Lim, S.J. 2019. Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg. Malaysian Applied Biology 48(2): 63-69.

Aluko, R.E. 2012. Functional Foods and Nutraceuticals. Springer.

Babji, A., Nurfatin, M., Etty Syarmila, I. & Masitah, M. 2015. Secrets of edible bird nest. UTAR Agricultural Science Journal 1(1): 32-37.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.

Chang, L.S., Karim, R., Abdulkarim, S.M. & Ghazali, H.M. 2018. Production and characterization of enzyme‐treated spray‐dried soursop (Annona muricata L.) powder. Journal of Food Process Engineering 41(5): e12688.

Chua, L.S. & Zukefli, S.N. 2016. A Comprehensive review of edible bird nests and swiftlet farming. Journal of Integrative Medicine 14(6): 415-428.

Dai, Y., Cao, J., Wang, Y., Chen, Y. & Jiang, L. 2021. A comprehensive review of edible bird's nest. Food Research International 140: 109875.

De Góes-Favoni, S.P. & Bueno, F.R. 2014. Microbial transglutaminase: General characteristics and performance in food processing technology. Food Biotechnology 28(1): 1-24.

Fatima, S.W. & Khare, S.K. 2018. Current insight and futuristic vistas of microbial transglutaminase in nutraceutical industry. Microbiological Research 215: 7-14.

Gan, J.Y., Chang, L.S., Nasir, N.A.M., Babji, A.S. & Lim, S.J. 2020. Evaluation of physicochemical properties, amino acid profile and bioactivities of edible bird's nest hydrolysate as affected by drying methods. LWT 131: 109777.

Guo, L., Wu, Y., Liu, M., Ge, Y. & Chen, Y. 2018. Rapid authentication of edible bird's nest by FTIR spectroscopy combined with chemometrics. Journal of the Science of Food and Agriculture 98(8): 3057-3065.

Gurung, N., Ray, S., Bose, S. & Rai, V. 2013. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International 2013: 329121.

Hamzah, Z., Jeyaraman, S., Hashim, O. & Hussin, K. 2017. Application of Fourier transform infrared spectroscopy on edible bird nest authenticity. Contemporary Issues and Development in the Global Halal Industry: Selected Papers from the International Halal Conference 2014. hlm. 557-566.

Hamzah, Z., Jeyaraman, S., Hashim, O. & Kamarudin, H. 2015. Waste to wealth for the edible bird nest industry. Applied Mechanics and Materials 754-755: 990-997.

Han, Y., Han, L., Yao, Y., Li, Y. & Liu, X. 2018. Key factors in FTIR spectroscopic analysis of DNA: The sampling technique, pretreatment temperature and sample concentration. Analytical Methods 10(21): 2436-2443.

Hu, X., Zhao, M., Sun, W., Zhao, G. & Ren, J. 2011. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate. Journal of Agricultural and Food Chemistry 59(16): 8886-8894.

Kathan, R.H. & Weeks, D.I. 1969. Structure studies of collocalia mucoid: I. Carbohydrate and amino acid composition. Archives of Biochemistry and Biophysics 134(2): 572-576.

Keillor, J.W., Clouthier, C.M., Apperley, K.Y., Akbar, A. & Mulani, A. 2014. Acyl transfer mechanisms of tissue transglutaminase. Bioorganic Chemistry 57: 186-197.

Khajehpour, M., Dashnau, J.L. & Vanderkooi, J.M. 2006. Infrared spectroscopy used to evaluate glycosylation of proteins. Analytical Biochemistry 348(1): 40-48.

Kolotylo, V., Piwowarek, K. & Kieliszek, M. 2023. Microbiological transglutaminase: Biotechnological application in the food industry. Open Life Sciences 18(1): 20220737.

Konca, Y., Kaliber, M., Uzkulekci, H.H., Cimen, B. & Yalcin, H. 2021. The effect of rosehip (Rosa canina L.) supplementation to diet on the performance, egg and meat quality, antioxidant activity in laying quail. Sains Malaysiana 50(12): 3617-3629.

Lai, Q.W.S., Fan, Q., Zheng, B.Z., Chen, Y., Dong, T.T. & Tsim, K.W.K. 2022. Edible bird’s nest, an Asian health food supplement, possesses anti-inflammatory responses in restoring the symptoms of atopic dermatitis: An analysis of signaling cascades. Frontiers in Pharmacology 13: 941413.

Lim, S.J., Aida, W.M.W., Maskat, M.Y., Mamot, S., Ropien, J. & Mohd, D.M. 2014. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocolloids 42(P2): 280-288.

Limpa, S.I., Islam, Z. & Reza, M.S. 2020. Comparative evaluation of bromhexine HCI mucoadhesive microspheres prepared by anionic, cationic and nonionic polymers. Bangladesh Pharmaceutical Journal 23(2): 117-124.

Ling, J.W.A., Chang, L.S., Babji, A.S. & Lim, S.J. 2020. Recovery of value‐added glycopeptides from edible bird's nest (EBN) co‐products: Enzymatic hydrolysis, physicochemical characteristics and bioactivity. Journal of the Science of Food and Agriculture 100(13): 4714-4722.

Liu, Y., Zhang, Y., Guo, Z., Wang, C., Kang, H., Li, J., Wang, W., Li, Y., Lu, F. & Liu, Y. 2021. Enhancing the functional characteristics of soy protein isolate via cross‐linking catalyzed by Bacillus subtilis transglutaminase. Journal of the Science of Food and Agriculture 101(10): 4154-4160.

Ma, F. & Liu, D. 2012. Sketch of the edible bird's nest and its important bioactivities. Food Research International 48(2): 559-567.

Marcone, M.F. 2005. Characterization of the edible bird’s nest the “Caviar of the East”. Food Research International 38(10): 1125-1134.

Mohamad Ibrahim, R., Mohamad Nasir, N.N., Abu Bakar, M.Z., Mahmud, R. & Ab Razak, N.A. 2021. The authentication and grading of edible bird’s nest by metabolite, nutritional, and mineral profiling. Foods 10(7): 1574.

Muhammad, N.N., Babji, A.S. & Ayub, M.K. 2015. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis. AIP Conference Proceedings. hlm. 050038.

Ng, S.R., Mohd Noor, H.S., Ramachandran, R., Tan, H.Y., Ch′ng, S-E., Chang, L.S., Babji, A.S. & Lim, S.J. 2020. Recovery of glycopeptides by enzymatic hydrolysis of edible bird’s nest: The physicochemical characteristics and protein profile. Journal of Food Measurement and Characterization 14: 2635-2645.

Noor, H.S.M., Ariff, R.M., Chang, L.S., Chai, X.Y., Tan, H.Y., Babji, A.S. & Lim, S.J. 2022. Enzymatic recovery of glycopeptides from different industrial grades edible bird’s nest and its by-products: Nutrient, probiotic and antioxidant activities, and physicochemical characteristics. Food Science and Human Wellness 11(6): 1555-1564.

Noor, H.S.M., Babji, A.S. & Lim, S.J. 2018. Nutritional composition of different grades of edible bird’s nest and its enzymatic hydrolysis. AIP Conference Proceedings. hlm. 1-7.

Nurfatin, M., Syarmila, I.E., Aliah, D.N., Zalifah, M., Babji, A. & Ayob, M. 2016. Effect of enzymatic hydrolysis on angiotensin converting enzyme (ACE) inhibitory activity in swiftlet saliva. International Food Research Journal 23(1): 141-146.

Park, Y-S., Choi, Y-S., Hwang, K-E., Kim, T-K., Lee, C-W., Shin, D-M. & Han, S.G. 2017. Physicochemical properties of meat batter added with edible silkworm pupae (Bombyx mori) and transglutaminase. Korean Journal for Food Science of Animal Resources 37(3): 351-359.

Ramachandran, R., Babji, A.S. & Sani, N.A. 2018. Antihypertensive potential of bioactive hydrolysate from edible bird’s nest. AIP Conference Proceedings. hlm. 1-7.

Ramji, S., Fizl, M., Koon, L.C. & Rahman, M.A. 2013. Roosting and nest-building behaviour of the white-nest swiftlet Aerodramus fuciphagus (Thunberg)(Aves: Apodidae) in farmed colonies. Raffles Bulletin of Zoology 29: 225-235.

Serhan, M., Jackemeyer, D., Long, M., Sprowls, M., Perez, I.D., Maret, W., Chen, F., Tao, N. & Forzani, E. 2020. Total iron measurement in human serum with a novel smartphone-based assay. IEEE Journal of Translational Engineering in Health and Medicine 8: 2800309.

Set, J. 2012. Fast, effective evaluation of edible bird nests using the handheld agilent 4100 ExoScan FTIR. Food Testing, Application Note 566: 1-6.

Sin, T.C., Khalafu, S.H.S., Mustapha, W.A.W., Maskat, M.Y. & Lim, S.J. 2018. Deodorisation of fucoidan and its effect towards physicochemical characteristics and antioxidation activities. Sains Malaysiana 47(7): 1501-1510.

Singh, R., Kumar, M., Mittal, A. & Mehta, P.K. 2016. Microbial enzymes: Industrial progress in 21st Century. 3 Biotech 6(2): 174.

Spellman, D., Mcevoy, E., O’Cuinn, G. & Fitzgerald, R. 2003. Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal 13(6): 447-453.

Tan, H.Y., Mun, S.L., Lee, J.L., Lim, S.J., Daud, N.A., Babji, A.S. & Sarbini, S.R. 2022. Bioactive sialylated-mucin (SiaMuc) glycopeptide produced from enzymatic hydrolysis of edible swiftlet’s nest (ESN): Degree of hydrolysis, nutritional bioavailability, and physicochemical characteristics. International Journal of Food Properties 25(1): 252-277.

Tang, C-H., Chen, Z., Li, L. & Yang, X-Q. 2006. Effects of transglutaminase treatment on the thermal properties of soy protein isolates. Food Research International 39(6): 704-711.

Unal, K.I., Chang, L.S., Mustapha, W.A.W., Razali, N.S.M., Babji, A.S. & Lim, S.J. 2022. Edible bird’s nest, a valuable glycoprotein source: Current research prospects and challenges in Malaysia. Sains Malaysiana 51(9): 2829-2842.

Yeo, B-H., Tang, T-K., Wong, S-F., Tan, C-P., Wang, Y., Cheong, L-Z. & Lai, O-M. 2021. Potential residual contaminants in edible bird's nest. Frontiers in Pharmacology 12: 631136.

Yu, F., Cangelosi, V.M., Zastrow, M.L., Tegoni, M., Plegaria, J.S., Tebo, A.G., Mocny, C.S., Ruckthong, L., Qayyum, H. & Pecoraro, V.L. 2014. Protein design: Toward functional metalloenzymes. Chemical Reviews 114(7): 3495-3578.

Zulkifli, A.S., Babji, A.S., Lim, S.J., Teh, A.H., Daud, N.M. & Rahman, H.A. 2019. Effect of different hydrolysis time and enzymes on chemical properties, antioxidant and antihyperglycemic activities of edible bird nest hydrolysate. Malaysian Applied Biology 48(2): 149-156.

 

*Pengarang untuk surat-menyurat; email: joe@ukm.edu.my

 

 

 

 

 

 

   

sebelumnya