Sains Malaysiana 53(1)(2024): 189-200
http://doi.org/10.17576/jsm-2024-5301-14
Kesan Transglutaminase kepada Ciri Fizikokimia dan Aktiviti Biologi Hidrolisat Sarang Burung Walit
(Effect of Transglutaminase
towards Physicochemical Properties and Biological Activities of Edible Bird’s
Nest Hydrolysates)
KOH
YUN SHI1, TER ZHI YIN1, RAFIDAH MOHD ARIFF1,4,
NUR FARHANA ABD RAHMAN1,5, CHANG LEE SIN2,3, ABDUL SALAM
BABJI1,2 & LIM SENG JOE1,2,*
1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Pusat Inovasi Teknologi Manisan (MANIS), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
3Jabatan Sains Makanan dan Nutrisi, Fakulti Sains Gunaan, Universiti UCSI, No.1, Jalan Menara Gading, UCSI Heights, 56000 Cheras,
Kuala Lumpur, Malaysia
4International Institute for Halal Research and
Training (INHART), International Islamic University Malaysia (IIUM), 53100 Jalan Gombak, Kuala Lumpur, Malaysia
5 School of Industrial Technology, Faculty of Applied Sciences, UiTM Shah Alam, Shah Alam 40450, Malaysia
Diserahkan: 9 Mac 2023/Diterima: 8 Disember 2023
Abstrak
Kajian terdahulu menunjukkan bahawa
glikoprotein sarang burung walit boleh dihidrolisis dan dipulihkan sebagai
hidrolisat sarang burung walit (SBWh) yang boleh dimakan dalam bentuk serbuk.
Kajian ini adalah kerja sambungan daripada kajian terdahulu, yang mana pelbagai
kepekatan enzim transglutaminase (TG) telah digunakan dalam pembentukan semula
bentuk serbuk SBWh menggunakan acuan dan kesannya terhadap sifat fizikokimia
dan bioaktiviti SBWh. Proses hidrolisis enzim menunjukkan bahawa sampel SBWh
mempunyai hasil pulih lebih daripada 60% dan menunjukkan warna yang lebih
terang daripada SBW mentah. Kelarutan SBWh dengan TG lebih rendah tetapi ia
boleh dibentuk semula ke bentuk yang diingini. Corak spektrum FTIR untuk sampel
SBWh juga menunjukkan bahawa ketulenan glikopeptida SBW yang tinggi telah
diperoleh. Untuk aktiviti antioksidan, produk sampingan SBWh (SBWhcp)
menunjukkan aktiviti penyingkiran radikal bebas DPPH yang lebih tinggi. Secara
ringkasnya, penambahan TG kepada SBWh telah meningkatkan sifat fizikokimia dan
bioaktiviti. Penemuan ini menghasilkan wawasan tentang aplikasi dan pembangunan
produk EBN menggunakan EBNh dengan TG yang mempunyai bioaktiviti yang tinggi.
Kata kunci: DPPH; gam daging; hidrolisat; sarang burung walit
Abstract
Previous study has shown that edible bird’s nest (EBN)
glycoprotein can be hydrolysed and recovered as edible bird’s nest hydrolysate
(EBNh) in the form of powder. This research is a
continuous work from previous study, in which different concentrations of
transglutaminase enzyme (TG) was applied in reconstituting the shape of EBNh powder using mould, and its effect on the
physicochemical properties and bioactivities of EBNh.
Enzymatic hydrolysis process showed that EBNh samples
had recovery yield exceeding 60% and demonstrated brighter colour than raw EBN.
Solubility of EBNh with TG was lower but it can be
reconstituted into desirable shape. Spectrum pattern of FTIR for EBNh sample also showed that high authenticity of EBN glycopeptide was obtained. For antioxidant activities, EBNh co-product (EBNhcp)
exhibited higher DPPH free radical scavenging activity. In short, addition of
TG to EBNh has enhanced the physicochemical
properties and bioactivities. The finding generates insight on the application
and development of EBN products using EBNh with TG
with high bioactivities.
Keywords: DPPH; edible bird’s nest; hydrolysate; meat glue
RUJUKAN
Ajayi,
O., Okedina, T., Samuel, A., Asieba, G., Jegede, A., Onyemali, C.,
Ehiwuogu-Onyibe, J., Lawal, A. & Elemo, G. 2019. Evaluation of starter
culture fermented sweet potato flour using FTIR spectra and GCMS chromatogram. African Journal of Microbiology Research 13(1): 1-13.
Ali, A.A.M., Noor, H.S.M., Chong,
P.K., Babji, A.S. & Lim, S.J. 2019. Comparison of amino acids profile and
antioxidant activities between edible bird nest and chicken egg. Malaysian Applied Biology 48(2): 63-69.
Aluko, R.E. 2012. Functional Foods and Nutraceuticals. Springer.
Babji, A., Nurfatin, M., Etty
Syarmila, I. & Masitah, M. 2015. Secrets of edible bird nest. UTAR Agricultural Science Journal 1(1):
32-37.
Bradford, M.M. 1976. A rapid and
sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.
Chang, L.S., Karim, R., Abdulkarim,
S.M. & Ghazali, H.M. 2018. Production and characterization of
enzyme‐treated spray‐dried soursop (Annona muricata L.)
powder. Journal of Food Process
Engineering 41(5): e12688.
Chua, L.S. & Zukefli, S.N.
2016. A Comprehensive review of edible bird nests and swiftlet farming. Journal of Integrative Medicine 14(6):
415-428.
Dai, Y., Cao, J., Wang, Y., Chen,
Y. & Jiang, L. 2021. A comprehensive review of edible bird's nest. Food Research International 140: 109875.
De Góes-Favoni, S.P. & Bueno,
F.R. 2014. Microbial transglutaminase: General characteristics and performance
in food processing technology. Food
Biotechnology 28(1): 1-24.
Fatima, S.W. & Khare, S.K.
2018. Current insight and futuristic vistas of microbial transglutaminase in
nutraceutical industry. Microbiological
Research 215: 7-14.
Gan, J.Y., Chang, L.S., Nasir,
N.A.M., Babji, A.S. & Lim, S.J. 2020. Evaluation of physicochemical
properties, amino acid profile and bioactivities of edible bird's nest
hydrolysate as affected by drying methods. LWT 131: 109777.
Guo, L., Wu, Y., Liu, M., Ge, Y.
& Chen, Y. 2018. Rapid authentication of edible bird's nest by FTIR
spectroscopy combined with chemometrics. Journal
of the Science of Food and Agriculture 98(8): 3057-3065.
Gurung, N., Ray, S., Bose, S. &
Rai, V. 2013. A broader view: Microbial enzymes and their relevance in
industries, medicine, and beyond. BioMed
Research International 2013: 329121.
Hamzah, Z., Jeyaraman, S., Hashim,
O. & Hussin, K. 2017. Application of Fourier transform infrared
spectroscopy on edible bird nest authenticity. Contemporary Issues and Development in the Global Halal Industry:
Selected Papers from the International Halal Conference 2014. hlm. 557-566.
Hamzah, Z., Jeyaraman, S., Hashim,
O. & Kamarudin, H. 2015. Waste to wealth for the edible bird nest industry. Applied Mechanics and Materials 754-755: 990-997.
Han, Y., Han, L., Yao, Y., Li, Y.
& Liu, X. 2018. Key factors in FTIR spectroscopic analysis of DNA: The
sampling technique, pretreatment temperature and sample concentration. Analytical Methods 10(21): 2436-2443.
Hu, X., Zhao, M., Sun, W., Zhao, G.
& Ren, J. 2011. Effects of microfluidization treatment and transglutaminase
cross-linking on physicochemical, functional, and conformational properties of
peanut protein isolate. Journal of
Agricultural and Food Chemistry 59(16): 8886-8894.
Kathan, R.H. & Weeks, D.I.
1969. Structure studies of collocalia mucoid: I. Carbohydrate and amino acid
composition. Archives of Biochemistry and
Biophysics 134(2): 572-576.
Keillor, J.W., Clouthier, C.M.,
Apperley, K.Y., Akbar, A. & Mulani, A. 2014. Acyl transfer mechanisms of
tissue transglutaminase. Bioorganic
Chemistry 57: 186-197.
Khajehpour, M., Dashnau, J.L. &
Vanderkooi, J.M. 2006. Infrared spectroscopy used to evaluate glycosylation of
proteins. Analytical Biochemistry 348(1): 40-48.
Kolotylo, V., Piwowarek, K. &
Kieliszek, M. 2023. Microbiological transglutaminase: Biotechnological
application in the food industry. Open
Life Sciences 18(1): 20220737.
Konca, Y., Kaliber, M., Uzkulekci,
H.H., Cimen, B. & Yalcin, H. 2021. The effect of rosehip (Rosa canina L.) supplementation to diet on the performance, egg and meat quality,
antioxidant activity in laying quail. Sains
Malaysiana 50(12): 3617-3629.
Lai, Q.W.S., Fan, Q., Zheng, B.Z.,
Chen, Y., Dong, T.T. & Tsim, K.W.K. 2022. Edible bird’s nest, an Asian
health food supplement, possesses anti-inflammatory responses in restoring the
symptoms of atopic dermatitis: An analysis of signaling cascades. Frontiers in Pharmacology 13: 941413.
Lim, S.J., Aida, W.M.W., Maskat,
M.Y., Mamot, S., Ropien, J. & Mohd, D.M. 2014. Isolation and antioxidant
capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocolloids 42(P2): 280-288.
Limpa, S.I., Islam, Z. & Reza,
M.S. 2020. Comparative evaluation of bromhexine HCI mucoadhesive microspheres
prepared by anionic, cationic and nonionic polymers. Bangladesh Pharmaceutical Journal 23(2): 117-124.
Ling, J.W.A., Chang, L.S., Babji,
A.S. & Lim, S.J. 2020. Recovery of value‐added glycopeptides from
edible bird's nest (EBN) co‐products: Enzymatic hydrolysis,
physicochemical characteristics and bioactivity. Journal of the Science of Food and Agriculture 100(13): 4714-4722.
Liu, Y., Zhang, Y., Guo, Z., Wang,
C., Kang, H., Li, J., Wang, W., Li, Y., Lu, F. & Liu, Y. 2021. Enhancing
the functional characteristics of soy protein isolate via cross‐linking
catalyzed by Bacillus subtilis transglutaminase. Journal of the Science of Food and Agriculture 101(10): 4154-4160.
Ma, F. & Liu, D. 2012. Sketch
of the edible bird's nest and its important bioactivities. Food Research International 48(2): 559-567.
Marcone, M.F. 2005.
Characterization of the edible bird’s nest the “Caviar of the East”. Food Research International 38(10):
1125-1134.
Mohamad Ibrahim, R., Mohamad Nasir,
N.N., Abu Bakar, M.Z., Mahmud, R. & Ab Razak, N.A. 2021. The authentication
and grading of edible bird’s nest by metabolite, nutritional, and mineral
profiling. Foods 10(7): 1574.
Muhammad, N.N., Babji, A.S. &
Ayub, M.K. 2015. Antioxidative activities of hydrolysates from edible birds
nest using enzymatic hydrolysis. AIP
Conference Proceedings. hlm. 050038.
Ng, S.R., Mohd Noor, H.S.,
Ramachandran, R., Tan, H.Y., Ch′ng, S-E., Chang, L.S., Babji, A.S. &
Lim, S.J. 2020. Recovery of glycopeptides by enzymatic hydrolysis of edible
bird’s nest: The physicochemical characteristics and protein profile. Journal of Food Measurement and
Characterization 14: 2635-2645.
Noor, H.S.M., Ariff, R.M., Chang,
L.S., Chai, X.Y., Tan, H.Y., Babji, A.S. & Lim, S.J. 2022. Enzymatic
recovery of glycopeptides from different industrial grades edible bird’s nest
and its by-products: Nutrient, probiotic and antioxidant activities, and
physicochemical characteristics. Food
Science and Human Wellness 11(6): 1555-1564.
Noor, H.S.M., Babji, A.S. &
Lim, S.J. 2018. Nutritional composition of different grades of edible bird’s
nest and its enzymatic hydrolysis. AIP
Conference Proceedings. hlm. 1-7.
Nurfatin, M., Syarmila, I.E.,
Aliah, D.N., Zalifah, M., Babji, A. & Ayob, M. 2016. Effect of enzymatic
hydrolysis on angiotensin converting enzyme (ACE) inhibitory activity in
swiftlet saliva. International Food
Research Journal 23(1): 141-146.
Park, Y-S., Choi, Y-S., Hwang,
K-E., Kim, T-K., Lee, C-W., Shin, D-M. & Han, S.G. 2017. Physicochemical
properties of meat batter added with edible silkworm pupae (Bombyx mori)
and transglutaminase. Korean Journal for
Food Science of Animal Resources 37(3): 351-359.
Ramachandran, R., Babji, A.S. &
Sani, N.A. 2018. Antihypertensive potential of bioactive hydrolysate from
edible bird’s nest. AIP Conference
Proceedings. hlm. 1-7.
Ramji, S., Fizl, M., Koon, L.C.
& Rahman, M.A. 2013. Roosting and nest-building behaviour of the white-nest
swiftlet Aerodramus fuciphagus (Thunberg)(Aves: Apodidae) in farmed
colonies. Raffles Bulletin of Zoology 29: 225-235.
Serhan, M., Jackemeyer, D., Long,
M., Sprowls, M., Perez, I.D., Maret, W., Chen, F., Tao, N. & Forzani, E.
2020. Total iron measurement in human serum with a novel smartphone-based
assay. IEEE Journal of Translational
Engineering in Health and Medicine 8: 2800309.
Set, J. 2012. Fast, effective
evaluation of edible bird nests using the handheld agilent 4100 ExoScan FTIR. Food Testing, Application Note 566: 1-6.
Sin, T.C., Khalafu, S.H.S.,
Mustapha, W.A.W., Maskat, M.Y. & Lim, S.J. 2018. Deodorisation of fucoidan
and its effect towards physicochemical characteristics and antioxidation
activities. Sains Malaysiana 47(7):
1501-1510.
Singh, R., Kumar, M., Mittal, A.
& Mehta, P.K. 2016. Microbial enzymes: Industrial progress in 21st Century. 3 Biotech 6(2): 174.
Spellman, D., Mcevoy, E., O’Cuinn,
G. & Fitzgerald, R. 2003. Proteinase and exopeptidase hydrolysis of whey
protein: Comparison of the TNBS, OPA and pH stat methods for quantification of
degree of hydrolysis. International Dairy
Journal 13(6): 447-453.
Tan, H.Y., Mun, S.L., Lee, J.L.,
Lim, S.J., Daud, N.A., Babji, A.S. & Sarbini, S.R. 2022. Bioactive
sialylated-mucin (SiaMuc) glycopeptide produced from enzymatic hydrolysis of
edible swiftlet’s nest (ESN): Degree of hydrolysis, nutritional bioavailability,
and physicochemical characteristics. International
Journal of Food Properties 25(1): 252-277.
Tang, C-H., Chen, Z., Li, L. &
Yang, X-Q. 2006. Effects of transglutaminase treatment on the thermal
properties of soy protein isolates. Food
Research International 39(6): 704-711.
Unal, K.I., Chang, L.S., Mustapha,
W.A.W., Razali, N.S.M., Babji, A.S. & Lim, S.J. 2022. Edible bird’s nest, a
valuable glycoprotein source: Current research prospects and challenges in
Malaysia. Sains Malaysiana 51(9):
2829-2842.
Yeo, B-H., Tang, T-K., Wong, S-F.,
Tan, C-P., Wang, Y., Cheong, L-Z. & Lai, O-M. 2021. Potential residual
contaminants in edible bird's nest. Frontiers
in Pharmacology 12: 631136.
Yu, F., Cangelosi, V.M., Zastrow,
M.L., Tegoni, M., Plegaria, J.S., Tebo, A.G., Mocny, C.S., Ruckthong, L.,
Qayyum, H. & Pecoraro, V.L. 2014. Protein design: Toward functional
metalloenzymes. Chemical Reviews 114(7): 3495-3578.
Zulkifli, A.S., Babji, A.S., Lim,
S.J., Teh, A.H., Daud, N.M. & Rahman, H.A. 2019. Effect of different
hydrolysis time and enzymes on chemical properties, antioxidant and
antihyperglycemic activities of edible bird nest hydrolysate. Malaysian Applied Biology 48(2):
149-156.
*Pengarang untuk surat-menyurat; email: joe@ukm.edu.my
|